Financial support from the Fonds der Chemischen Industrie and the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen is gratefully acknowledged.

References

Frenz, B. A. (1981). Structure Determination Package, 4th ed., version 18. Enraf-Nonius, Delft.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Lebedev, V. A., Bochkova, R. I., Kuzubova, L. F., Kuz'min, E. A., Sharutin, V. V. \& Belov, N. V. (1982). Dokl. Akad. Nauk SSSR, 265, 332-335.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Preut, H., Röhm, P. \& Huber, F. (1986). Acta Cryst. C42, 657-658.
Sowerby, D. B. (1979). J. Chem. Res. (S), pp. 80-81; (M), pp. 1001-1028.

[1,2-Bis(dimethylphosphino)ethane]bis(cyclopentadienyl)dimethylthorium(IV) and [1,2-Bis(dimethylphosphino)ethane]dichlorobis(cyclopentadienyl)thorium(IV)

By Allan Zalkin, John G. Brennan and Richard A. Andersen
Materials and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley CA 94720, USA

(Received 13 June 1986; accepted 16 September 1986)

Abstract

Th}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{P}_{2}\right)\right] \quad\) (1), $\quad M_{r}=$ 542.44, monoclinic, $P 2_{1} / n, \quad a=18.485$ (4), $\quad b=$ 14.118 (4),$\quad c=8.258$ (2) $\AA, \quad \beta=91.05$ (2) ${ }^{\circ}, \quad V=$ $2154.7 \AA^{3}, \quad Z=4, \quad D_{x}=1.672 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=73.0 \mathrm{~cm}^{-1}, F(000)=1040, T=296 \mathrm{~K}$, $R=0.026$ for 2521 unique reflections with $F^{2}>2 \sigma\left(F^{2}\right)$. Distances (\AA) are: Th-C(Cp) 2.84 ± 0.03; ThC(methyl) 2.562 (8), 2.583 (7); Th- $\mathbf{P} \quad 3.146$ (2), 3. 147 (2); $\mathrm{Th}-\mathrm{Cp} 2.59,2 \cdot 57$. $\left[\mathrm{Th}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{16}\right.\right.$ P_{2})] (2), $\quad M_{r}=583.28$, monoclinic, $P 2_{1} / n, \quad a=$ 18.268 (2),$\quad b=14.237$ (6), $\quad c=7.996$ (3) $\AA, \quad \beta=$ 92.27 (4) ${ }^{\circ}, V=2078.0 \AA^{3}, Z=4, D_{x}=1.864 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.70173 \AA, \quad \mu=78.3 \mathrm{~cm}^{-1}, \quad F(000)=$ $1104, T=296 \mathrm{~K}, R=0.020$ for 2361 unique reflections with $I>\sigma(I)$. Distances (\AA) are: Th-C(Cp) $2.80 \pm 0.02 ; \quad \mathrm{Th}-\mathrm{Cl} 2.707$ (2), 2.708 (2); Th-P 3.121 (2), 3.122 (2); $\mathrm{Th}-\mathrm{Cp} 2.56,2.54$. The structures of (1) and (2) are crystallographically isomorphous and were investigated to study their sixcoordinate stereochemistry. The cyclopentadienyl rings are trans to the bidentate ligand.

Introduction. Compounds of the type $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2^{-}}$ $M(X)_{2}(L)$ where M is thorium or uranium, X is an anionic ligand such as halide or alkyl, and L is a neutral bidentate phosphine ligand were prepared in order to examine the details of inter- and intramolecular ligand exchange in solution. The stereochemistry of these six-coordinate compounds (defining the centroid of the cyclopentadienyl ring as occupying a coordination site)

0108-2701/87/030418-03\$01.50
in the solid state was essential since two idealized geometries are possible for $\mathrm{MX}_{2} \mathrm{Y}_{2}$-(bidentate ligand), that is either the X ligands or the Y ligands are trans to the bidentate ligand. For comparison the X-ray structures of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Th}\left(\mathrm{X}_{2}\right.$. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}$] where $X=\mathrm{Cl}, \mathrm{CH}_{3}$ (this paper) and where $X=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (Zalkin, Brennan \& Andersen, 1987) are described.

Experimental. The dimethyl complex (1) was made by the reaction of (2) with methyllithium at 228 K (Brennan, 1985). Colorless crystals suitable for X-ray studies were picked from the crystals obtained by crystallization from a toluene:pentane (1:4) solution at 203 K . The dichloro complex (2) was synthesized from the reaction of sodium cyclopentadienide with $\mathrm{ThCl}_{4} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}$ in a tetrahydrofuran solution at 203 K and crystallized from toluene. Crystals suitable for X-ray studies were grown from toluene:diethyl ether (6:4) at 253 K . The air-sensitive crystals were sealed inside quartz capillaries under
argon. Crystal $0.19 \times 0.25 \times 0.32 \mathrm{~mm}$ with six faces (1), $0.22 \times 0.25 \times 0.37 \mathrm{~mm}$ with 12 faces (2); modified Picker automatic diffractometer (1), Enraf-Nonius CAD-4 (2); graphite monochromator; cell dimensions from 20 reflections, $20<2 \theta<34^{\circ}$ (1), 24 reflections, $20<2 \theta<32^{\circ}$ (2); analytical absorption correction, range 1.47 to 1.93 (1), 3.26 to 4.66 (2); max. $(\sin \theta) / \lambda=0.60 \AA^{-1}(1), 0.54 \AA^{-1}(2)$; $h-22$ to $22, k 0$ to $16, l-9$ to $9(1) ; h-19$ to $19, k 0$ to $15, l 0$ to 8 (2); three standard reflections, $0.4 \%, 0.4 \%$, $0 \cdot 3 \%(1), 1 \cdot 3 \%, 1 \cdot 7 \%, 1 \cdot 2 \%$ (2) variation in standard's intensities from average, intensities adjusted isotropically; 7611 (1), $2929[I>\sigma(I)]$ (2) data, 3817 (1), 2361 (2) unique, $R_{\text {int }}=0.029$ (1), $0.020(h k 0, \bar{h} k 0)(2)$; structure solved by Patterson and Fourier methods; refined on $F, 190$ (1), 188 (2) parameters; 26 hydrogen positions (1) and 30 hydrogen positions (including four disordered positions) (2) in calculated locations with fixed isotropic thermal parameters; anisotropic thermal

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\sum_{l} \sum_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} / 3$.				
	x	y	z	$B_{\text {eq }}$
Compound (1)				
Th	$0 \cdot 10278$ (1)	$0 \cdot 18457$ (2)	0.17906 (3)	3.642 (6)
P (1)	$0 \cdot 12141$ (11)	0.35769 (16)	-0.05635 (27)	5.37 (6)
$\mathrm{P}(2)$	0.25767 (10)	0.20883 (15)	0.03265 (26)	5.08 (6)
C(1)	-0.0213 (5)	$0 \cdot 3063$ (7)	0.1659 (16)	7.0 (3)
C(2)	-0.0446 (5)	0.2234 (12)	$0 \cdot 1046$ (13)	8.3 (4)
C(3)	-0.0466 (5)	$0 \cdot 1579$ (7)	0.2250 (24)	9.0 (5)
C(4)	-0.0237 (6)	0.2027 (10)	0.3626 (14)	7.9 (4)
C(5)	-0.0073 (4)	0.2935 (8)	$0 \cdot 3280$ (15)	6.9 (3)
C(6)	0.1985 (6)	0.0315 (8)	0.2473 (17)	7.8 (4)
C(7)	0.1891 (6)	0.0748 (7)	0.3888 (16)	7.9 (4)
C(8)	0.1183 (8)	0.0566 (9)	0.4369 (12)	8.4 (4)
C(9)	0.0871 (6)	0.0038 (8)	0.3172 (20)	8.3 (4)
C (10)	$0 \cdot 1362$ (9)	-0.0112 (7)	$0 \cdot 2019$ (13)	8.5 (4)
C(11)	0.0599 (6)	0.3730 (8)	-0.2315 (11)	8.3 (4)
C (12)	$0 \cdot 1206$ (5)	0.4759 (6)	0.0293 (13)	8.0 (3)
C(13)	$0 \cdot 2082$ (6)	0.3541 (8)	-0.1612 (14)	9.4 (4)
C(14)	$0 \cdot 2681$ (5)	0.3231 (8)	-0.0677 (15)	10.3 (4)
C(15)	0.2898 (5)	0.1255 (9)	-0.1190 (13)	9.6 (4)
C(16)	0.3362 (4)	$0 \cdot 2140$ (7)	0.1685 (12)	7.6 (3)
C(17)	0.0900 (5)	0.1241 (6)	-0.1126(10)	6.4 (3)
C(18)	0.1712 (4)	0.3126 (6)	$0 \cdot 3446$ (10)	6.1 (2)
Compound (2)				
Th	0.10512 (1)	0.18258 (1)	0.16923 (2)	3.133 (6)
$\mathrm{P}(1)$	$0 \cdot 12195$ (9)	0.35857 (12)	-0.05896 (22)	5.09 (5)
$\mathrm{P}(2)$	0.25928 (8)	$0 \cdot 20910$ (13)	0.02111 (22)	4.99 (5)
C(1)	-0.0239 (3)	0.2933 (5)	0.1423 (11)	6.1 (2)
$\mathrm{C}(2)$	-0.0466 (3)	$0 \cdot 2029$ (6)	0.0970 (11)	6.9 (3)
$\mathrm{C}(3)$	-0.0416 (4)	$0 \cdot 1506$ (5)	0.2430 (15)	7.3 (3)
C(4)	-0.0149 (4)	$0 \cdot 2063$ (8)	0.3699 (10)	7.5 (3)
C(5)	-0.0059 (4)	0.2923 (6)	0.3086 (11)	$6 \cdot 2$ (2)
C(6)	0.2047 (4)	0.0417 (7)	0.2634 (15)	8.2 (3)
C (7)	0.1782 (9)	0.0736 (6)	0.4105 (16)	10.7 (4)
$\mathrm{C}(8)$	$0 \cdot 1072$ (6)	0.0419 (7)	0.4099 (11)	8.5 (3)
C(9)	0.0928 (4)	-0.0040 (5)	0.2691 (13)	6.9 (3)
$\mathrm{C}(10)$	0.1528 (6)	-0.0049 (5)	0.1802 (9)	7.2 (3)
C(11)	0.0631 (5)	0.3704 (6)	-0.2478 (9)	8.0 (3)
C (12)	0.1122 (4)	0.4724 (4)	0.0423 (11)	6.9 (2)
C(13)	0.2044 (5)	0.3509 (10)	-0.1849 (15)	5.17 (27)*
C(14)	0.2696 (6)	0.3324 (7)	-0.0591 (15)	4.76 (24)*
C(15)	0.2931 (4)	$0 \cdot 1194$ (8)	-0.1165 (11)	10.4 (4)
C(16)	0.3372 (3)	$0 \cdot 2249$ (6)	0.1667 (10)	7.1 (2)
$\mathrm{Cl}(1)$	0.08841 (9)	0.12385 (11)	-0.15195 (19)	5.77 (5)
$\mathrm{Cl}(2)$	0.17713 (9)	0.31184 (11)	0.36194 (19)	$5 \cdot 19$ (4)
$\mathrm{C}\left(13^{\prime}\right)$	0.2198 (6)	0.3772 (8)	-0.1076 (18)	5.40 (28)*
C(14)	$0 \cdot 2560$ (8)	$0 \cdot 2870$ (8)	-0.1594 (15)	$6 \cdot 3$ (3)*

parameters for non-hydrogen atoms except for disordered atoms in (2); $R=0.060$ for 3817 data (1); $R=0.026$ for 2521 reflections for which $F^{2}>2 \sigma\left(F^{2}\right)$ (1); $R=0.020$ for 2361 reflections for which $I>\sigma(I)$ (2); $w R=0.028$ (1), 0.027 (2); $S=1.1$ (1), 1.6 (2); $w=[\sigma(F)]^{-2}, p=0.035(1), 0.020(2)$ in calculation of $\sigma\left(F^{2}\right)$; max. (shift/ σ) <0.004; empirical extinction correction, $F_{\text {corr }}=(1+k I), k=1.7 \times 10^{-9}(1), 1.9 \times$ $10^{-7}(2)$; max. and min. of ΔF synthesis 0.9 and $-0.8 \mathrm{e} \AA^{-3}(1), 0.4$ and $-0.5 \mathrm{e} \AA^{-3}(2)$; atomic f for neutral $\mathrm{Th}, \mathrm{Cl}, \mathrm{P}$, and C and spherical bonded H from International Tables for X-ray Crystallography (1974); local unpublished programs and ORTEP (Johnson, 1965). Large anisotropic thermal parameters for $\mathrm{C}(13)$ and $\mathrm{C}(14)$ as well as a shortened $\mathrm{C}-\mathrm{C}$ distance between these atoms suggests disorder in the back bone of the dimethylphosphinoethane ligand. In the dichloro

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

Compound (1)		Compound (2)	
Th-C(1)	2.866 (8)	Th-C(1)	2.837 (6)
$\mathrm{Th}-\mathrm{C}(2)$	2.834 (9)	Th-C(2)	2.824 (6)
Th-C(3)	2.820 (9)	Th-C(3)	2.804 (6)
Th-C(4)	2.821 (8)	Th-C(4)	2.788 (6)
Th-C(5)	2.849 (8)	Th-C(5)	2.824 (6)
Th-C (6)	2.843 (9)	Th-C(6)	2.791 (7)
$\mathrm{Th}-\mathrm{C}$ (7)	2.802 (9)	Th-C(7)	2.776 (7)
Th-C(8)	2.803 (9)	Th-C(8)	2.777 (7)
$\mathrm{Th}-\mathrm{C}(9)$	2.813 (10)	Th-C(9)	2.785 (6)
$\mathrm{Th}-\mathrm{C}(10)$	2.838 (9)	Th-C(10)	2.808 (6)
$\mathrm{Th}-\mathrm{C}(18)$	2.583 (7)	$\mathrm{Th}-\mathrm{Cl}(1)$	2.707 (2)
$\mathrm{Th}-\mathrm{C}(17)$	$2 \cdot 562$ (8)	$\mathrm{Th}-\mathrm{Cl}(2)$	2.708 (2)
Th-Cp(1)*	2.593	Th-Cp(1)	$2 \cdot 564$
$\mathrm{Th}-\mathrm{Cp}(2)$	2.573	$\mathrm{Th}-\mathrm{Cp}(2)$	$2 \cdot 544$
Th-P(1)	3.146 (2)	Th-P(1)	3.122 (2)
$\mathrm{Th}-\mathrm{P}(2)$	3.147 (2)	$\mathrm{Th}-\mathrm{P}(2)$	$3 \cdot 121$ (2)
$\mathbf{P}(2)-P(1)$	$3 \cdot 352$ (3)	$\mathrm{P}(2)-\mathrm{P}(1)$	$3 \cdot 332$ (3)
$\mathbf{P}(1)-\mathrm{Th}-\mathrm{P}(2)$	64.36 (5)	$\mathrm{P}(1)-\mathrm{Th}-\mathrm{P}(2)$	64.52 (5)
$\mathrm{P}(1)-\mathrm{Th}-\mathrm{C}(17)$	71.76 (20)	$\mathrm{P}(1)-\mathrm{Th}-\mathrm{Cl}(1)$	72.75 (5)
$\mathrm{P}(1)-\mathrm{Th}-\mathrm{C}(18)$	74.05 (20)	$\mathrm{P}(1)-\mathrm{Th}-\mathrm{Cl}(2)$	74.35 (6)
$\mathrm{P}(2)-\mathrm{Th}-\mathrm{C}(17)$	75.18 (20)	$\mathbf{P}(2)-\mathrm{Th}-\mathrm{Cl}(1)$	75.33 (6)
$\mathbf{P}(2)-\mathrm{Th}-\mathrm{C}(18)$	71.78 (18)	$\mathrm{P}(2)-\mathrm{Th}-\mathrm{Cl}(2)$	73.05 (5)
$\mathrm{C}(17)-\mathrm{Th}-\mathrm{C}(18)$	140.04 (28)	$\mathrm{Cl}(1)-\mathrm{Th}-\mathrm{Cl}(2)$	141.63 (5)
$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{Cp}(2)$	116.1	$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{Cp}(2)$	113.9
$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{C}(18)$	98.9	$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{Cl}(1)$	101.2
$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{C}(17)$	101.4	$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{Cl}(2)$	98.7
$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{P}(1)$	90.4	$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{P}(1)$	91.3
$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{P}(2)$	154.5	$\mathrm{Cp}(1)-\mathrm{Th}-\mathrm{P}(2)$	155.6
$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{C}(17)$	99.4	$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{Cl}(1)$	99.6
$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{C}(18)$	102.0	$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{Cl}(2)$	101.8
$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{P}(1)$	153.4	$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{P}(1)$	154.7
$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{P}(2)$	89.3	$\mathrm{Cp}(2)-\mathrm{Th}-\mathrm{P}(2)$	$90 \cdot 3$
Th-P(1)-C(11)	$120 \cdot 3$ (4)	Th-P(1)-C(11)	119.26 (28)
$\mathrm{Th}-\mathrm{P}(1)-\mathrm{C}(12)$	118.2 (3)	$\mathrm{Th}-\mathrm{P}(1)-\mathrm{C}(12)$	116.14 (26)
Th-P(1)-C(13)	112.1 (3)	$\mathrm{Th}-\mathrm{P}(1)-\mathrm{C}(13)$	111.9 (4)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	$100 \cdot 9$ (5)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	102.7 (4)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$	99.5 (5)	$C(11)-P(1)-C(13)$	91.2 (5)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(13)$	102.9 (5)	$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(13)$	113.0 (5)
Th-P(2)-C(14)	112.0 (3)	$\mathrm{Th}-\mathrm{P}(2)-\mathrm{C}(14)$	$110 \cdot 3$ (4)
$\mathrm{Th}-\mathrm{P}(2)-\mathrm{C}(15)$	$120 \cdot 2$ (3)	$\mathrm{Th}-\mathrm{P}(2)-\mathrm{C}(15)$	118.7 (3)
$\mathrm{Th}-\mathrm{P}(2)-\mathrm{C}(16)$	119.2 (3)	Th-P(2)-C(16)	117.90 (24)
$\mathrm{C}(14)-\mathrm{P}(2)-\mathrm{C}(15)$	$102 \cdot 7$ (6)	$\mathrm{C}(14)-\mathrm{P}(2)-\mathrm{C}(15)$	114.2 (5)
C(14)-P(2)-C(16)	98.9 (5)	$\mathrm{C}(14)-\mathrm{P}(2)-\mathrm{C}(16)$	91.0 (4)
C(15)-P(2)-C(16)	$100 \cdot 6$ (5)	$\mathrm{C}(15)-\mathrm{P}(2)-\mathrm{C}(16)$	101.5 (4)
		Th-P(1)-C(13') ${ }^{+}$	110.7 (4)
		$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}\left(13^{\prime}\right)$	$110 \cdot 7$ (5)
		$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}\left(13^{\prime}\right)$	94.4 (4)
		$\mathrm{Th}-\mathrm{P}(2)-\mathrm{C}\left(14^{\prime}\right)$	111.9 (4)
		$\mathrm{C}(15)-\mathrm{P}(2)-\mathrm{C}\left(14^{\prime}\right)$	87.1 (5)
		$\mathrm{C}(16)-\mathrm{P}(2)-\mathrm{C}\left(14^{\prime}\right)$	$115 \cdot 6$ (5)

[^0]$\left[\mathrm{Th}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{P}_{2}\right)\right]$ AND $\left[\mathrm{Th}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{P}_{2}\right)\right]$
complex (2) these atoms were treated as half atoms in two distinct positions and refined with restrained distances (Waser, 1963) [P-C 1.86(1); C-C 1.54 (1) \AA] and with isotropic thermal parameters, whereas in (1) these carbon atoms were refined with anisotropic thermal parameters; either way of treating these atoms resulted in the same agreement factors. The temperature factors of the phosphorus atoms are a little larger than and about as isotropic as the thorium atoms, which suggests that they are not disordered. However, the terminal-phosphorus methyl-group carbon atoms have large anisotropic thermal parameters and are likely disordered in a synchronous fashion with $\mathrm{C}(14)$ and $\mathrm{C}(15)$ through the pivotal phosphorus atom.

Atomic parameters are listed in Table 1,* and distances and angles are listed in Table 2. Figs. 1 and 2 show the molecules and numbering schemes.

Discussion. The geometry of (1) and (2), at first glance, is contra-intuitive since the sterically largest ligands should try to get farthest from each other. The expectation, based upon the concept that the steric size (cone angle) of the $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$ligand is larger than that of a chloride or methyl group (Bagnall \& Xing-fu, 1982), is that the cyclopentadienyl groups should be trans to each other and the anionic ligands should be trans to the chelating phosphine ligands. This is clearly not the case in (1), (2) and in the benzyl analogue (Zalkin, Brennan \& Andersen, 1987). This situation has been analyzed by Keppert (1977). In six-coordinate molecules of the type $M(X)_{2}(Y)_{2}$ (bidentate ligand) the locations of X relative to Y are determined by the $M-X$ and $M-Y$ distances. Monodentate ligands with the shortest metal-ligand distances will occupy the less sterically crowded sites trans to the bidentate ligand. In the compounds (2) and the benzyl analogue, the Th-ring centroid distance is shorter than the $\mathrm{Th}-$ C (benzyl) or the $\mathrm{Th}-\mathrm{Cl}$ bond distance. Hence the ligand with the shortest bond distance is located trans to the bidentate ligand in accord with Keppert's prediction. A similar explanation was proposed for the stereochemistry of $\mathrm{UCl} \mathrm{I}_{2}\left\{\mathrm{~N}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]\right\}_{2} .\left(\mathrm{CH}_{3} \mathrm{OCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{OCH}_{3}$) (McCullough, Turner, Andersen, Zalkin \& Templeton, 1981). A similar geometry is observed for (1) even though the Th -ring centroid distance is essentially equal to that of the $\mathrm{Th}-\mathrm{C}\left(\mathrm{CH}_{3}\right)$. This suggests that the application of Keppert's rules to compounds with cyclopentadienyl ligands may not be universally appropriate and the rules should serve only as a guide to stereochemical predictions.

[^1]

Fig. 1. ORTEP (Johnson, 1965) view of (1) showing the atomic numbering scheme; 50% probability ellipsoids.

Fig. 2. ORTEP (Johnson, 1965) view of (2) showing the atomic numbering scheme; 50% probability ellipsoids; disordered atoms $\mathrm{C}\left(13^{\prime}\right)$ and $\mathrm{C}\left(14^{\prime}\right)$ not included.

The averaged $\mathrm{Th}-\mathrm{P}$ distances in (1) and (2) are $3 \cdot 147$ (1) and $3 \cdot 121$ (1) \AA, respectively. These distances are in the range found in $\mathrm{Th}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}\right]$ of $3.17 \pm 0.02 \AA$ (Edwards, Andersen \& Zalkin, 1984).

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC03-76SF00098.

References

Bagnall, K. W. \& Xing-Fu, L. (1982). J. Chem. Soc. Dalton Trans. pp. 1365-1369.
Brennan, J. G. (1985). PhD Thesis. Univ. of California at Berkeley.
Edwards, P. G., Andersen, R. A. \& Zalkin, A. (1984). Organometallics, 3, 293-298.
International Tables for X-ray Crystallography (1974). Vol. IV; Table 2.2, pp. 71-102. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Keppert, D. L. (1977). Prog. Inorg. Chem. 23, 1-65.
McCullough, L. G., Turner, H. W., Andersen, R. A., Zalkin, A. \& Templeton, D. H. (1981). Inorg. Chem. 20, 2869-2871.

WASER, J. (1963). Acta Cryst. 16, 1091-1094.
Zalkin, A., Brennan, J. G. \& Andersen, R. A. (1987). Acta Cryst. C43, 421-423.

[^0]: * $\mathrm{Cp}(1)$ and $\mathrm{Cp}(2)$ represent the centroids of cyclopentadienyl atoms $C(1)-C(5)$ and $C(6)-C(10)$ respectively.
 \dagger Primed atoms are the disordered counterparts of $\mathrm{C}(13)$ and C (14).

[^1]: * Lists of structure factors, anisotropic thermal parameters, calculated hydrogen positions, distances and angles, least-squares planes, and ORTEP drawings have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43409 (39 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

